

 149

Writing Android Services
In a previous chapter (p 67) we introduced the concept of a Service in
Android. There is nothing mysterious about them; they are merely tasks that
run in the background, independent of the main Activity. Note that, although
they are separate components, they still run in context of the main Activity
process and any operation that is CPU intensive or will block (like network
operations) should be run in a separate thread.

To define a new service, your class needs to extend the class Service. Let’s
look at some skeleton code (this is for Android 2.0 or later, for previous versions see
the onStart() method):

public class NewService extends Service {

 @Override
 public void onCreate() {
 ...
 }

 @Override
 public IBinder onBind(Intent intent) {
 return mBinder;
 }

 @Override
 public int onStartCommand(Intent intent, int flags,
 int startId) {
 return Service.START_STICKY;
 }
}

As usual, we have the onCreate API, which is called when the service is
first created. The onBind API is called to return the communication channel
to the service. The service may return null if clients can not bind to the
service, i.e. will only start or stop the service via startService or
stopService and not call bindService. Although overriding the
onStartCommand API is optional, it is often the place where services will
start background processing. Note that this API may be called several times

Chapter

14

 150

during a Service lifecycle. The flags parameter is used to discover how the
service was started, with

• START_FLAG_REDELIVERY – indicates that the Intent parameter is
a redelivery, or

• START_FLAG_RETRY – indicates that the Service was restarted after
an abnormal termination.

Implementing the (deprecated) onStart API in Android SDK
2.0 or later is equivalent to the onStartCommand
implementation in the code snippet on the previous page.

The Service must also be registered in the Android manifest. To do this we
use the <service> element tag. You probably also want to include an
Intent Filter in order to specify which services your Service provides. We will
cover this a bit later in this chapter.

Communicating with Services
Although it’s perfectly possible and valid to have a service running in the
background without any direct communication channel to the foreground
Activity, you probably want to interact with the Service in some way to
control its operation or retrieve some status of information.

In some of these cases you want to bind to the Service, as opposed to just
starting it, which maintains a reference to it, allowing the client to make
method calls to the Service. In this chapter we will define a new remote
Service that allows clients to call methods exported via an implemented
interface.

The client interaction when binding to a Service is slightly different. The
connection is represented as a ServiceConnection, where you will need
to override the onServiceConnected and onServiceDisconnected
methods to retrieve a reference when the connection is established, for
example:

 /* Our service */
 IDmsFriends fService;

 /**
 * Connection for interacting with the service.
 */
 private ServiceConnection mFriendsConnection =
 new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {

 151

 // Create the connection to our service.
 fService = IDmsFriends.Stub.asInterface(service);
 }

 public void onServiceDisconnected(
 ComponentName className) {
 fService = null;
 }
 };

To bind to the service the client calls bindService, and once bound, the
public interface is accessible through the object instance retrieve in the
onServiceConnected handler (fService in the example above). Note
that all methods are executed synchronously (the local method blocks until
the remote method finishes), even if there is no return value.

Defining the interface in AIDL
On the Android platform, one process can not normally access the memory
of another process. So to talk, they need to decompose their objects into
primitives that the operating system can understand, and "marshall" the
object across that process boundary for you. Luckily Android provides the
AIDL tool to make this a lot easier it for you.

AIDL (Android Interface Definition Language) is an IDL language used to
generate code that enables two processes on an Android-powered device to
communicate using interprocess communication (IPC). So in our case we
have code in one process (the Activity) that needs to call methods on an
object in another process (our Service). To do this we will use AIDL to
generate code to marshall the parameters between them.

AIDL is an IPC mechanism similar to COM or Corba, but lighter weight. It
uses a proxy class to pass values between the client and the implementation.

The following steps are required to implement an IPC service using AIDL.

1. Create your .aidl file - This file defines an interface
(MyInterface.aidl) that defines the methods and fields available
to a client.

2. Add the .aidl file to the makefile – if using the Eclipse ADT
Plugin, this is all done for you. Android includes the compiler, called
aidl, in the tools/ directory.

 152

3. Implement the interface methods - The AIDL compiler creates an
interface in Java from your AIDL interface. This interface has an
inner abstract class named Stub that inherits the interface (and
implements a few additional methods necessary for the IPC call).

4. Expose the interface to clients - For a service, we override
Service.onBind() to return an instance of the class that
implements the interface.

Figure 23 shows how the Android generated classes fit together:

Figure 23 : Android IPC inner classes

The IPC mechanism works as follows: You declare the RPC interface you
want to implement using the simple IDL (interface definition language).
Using that declaration, you run the aidl tool which generates a Java
interface definition that must be made available to both the local and the
remote process.

Typically, the remote process would be managed by a service and would have
both the interface file generated by the aidl tool and the Stub subclass
which implements the actual RPC methods. On the other hand, the clients of
the service would have only the interface file generated by the aidl tool.

The WhereIsJohny Service
To see how this all fit together, lets add a Service to our application that
implements a well defined interface through which the clients can control and
query the service.

We’ll start with the AIDL definition.

